
Strategic Outcomes

Justen Rickert

May 12, 2017

Contents
1 Purpose 2

2 Nomenclature and convention 2
2.1 Positioning circles on the canvas with the vector abstraction 3
2.2 Designing interesting circle movement on the canvas with the Behavior interface 5

3 Mathematical foundation 6
3.1 Finite Automaton . 7
3.2 Non-determinism . 8
3.3 Running loop . 9

4 Qualifying behavior 9
4.1 Good behavior . 9
4.2 Simple bad behavior . 11
4.3 Complex bad behavior . 12
4.4 Analysis . 13

5 Bibliography 14

1

1 Purpose
This is an image of a simulation, where the goal could be a number of things, like simu-
lating bacterial infections inside of an open wound, or soldiers on a battlefield, or players
competing against one another in a strategy game. In any of the cases, there is a notion
of strategy involved at some point. A bacterial infection plays the game of trying to out-
smart the natural defense mechanisms of the organism that it is invading. Soldiers wish to
succeed in capturing strategic points on the battlefield to keep casualties during conflicts
lower than opposing forces. In a strategy game all that exists in the game is strategy; a
player must have great knowledge of the rules of the game so he can use his/her time playing
to make moves which would place him/her as the victor after the game has been decided.

Surely, any of these things would be at
least interesting to look at. However it is not
always clear to whom the outcome will be in
favor. One could ask good, pertinent ques-
tions as: How bad does an infection need
to be so that the host of the infection does
not have any hope of fighting it off; what
amount of soldiers, with what munitions,
and with what positional advantage does an
army need in order that victory is ensured;
or, generally speaking, what strategic deci-
sions need to be made so that one side meets
the conditions of success while its opposing
side does not? Furthermore what consider-
ations need to be made to give any of these
examples determinable outcomes? Perhaps
a patient with some ailment is never fully rid

of it; or a war is waged on a battlefield indefinitely without a side ever succeeding over the
other.

In the simulations described in this paper, success or failure can be verified in a straight-
forward manner. Run the simulation, then wait until the conditions of success or failure
are met, thus halting the simulation. If the simulation does not halt, then in many cases it
may be reasonable to assume that the simulation will never halt. It is the purpose then to
consider what sorts of techniques can be employed to better determine how the constraints
of a simulation lead to a simulation concluding.

2 Nomenclature and convention
The simulation could be implemented in a number of different ways. For reasons of porta-
bility and simplicity, this simulation machine is run on an HTML Canvas Element with the
JavaScript programming language. That is, a canvas capable of running graphical operations
on a web page capable of being loaded by any ordinary web browser. The objects of the

2

simulations are circles, and they move around on the canvas by the laws of vector calculus
in 2-dimensional Euclidean Space R2. There are directional vectors, or velocity vectors, in
the direction that the circles face themselves, and positional vectors defining the placements
of the circles on the canvas.

A circle c may take damage from an opposing circle c when the opposing circle damages
it. A circle might be capable of damaging another circle when its attack is available to use
and if it reaches the circle it wants to damage such that the two circles are touching. A
circle might also be able to damage another circle by firing something at it, like a bullet, or
maybe even the circle does not even need to fire anything because it is simply capable of
damaging another circle from a distance. A circle is eliminated on the canvas when it turns
gray, or letting θ to be the predicate function determining death, if θ(c) = T , then the circle
c is gray and dead. In contrast ¬θ or τ denotes alive, where the τ(c) = T implies that the
circle c will be colored either red or blue, depending upon which color it is.

For the red team, the set of all red circles R, victory is determined when it is that the
set of all blue circles, denoted B, are colored gray and at least one of the red circles is not:
[∀c ∈ B, θ(c)] ∧ [∃c ∈ τ(c)]. In such a case where [∀c ∈ B, θ(c)] ∧ [∀c ∈ θ(c)], victory is given
to R to rule out the possibility of a tie.

2.1 Positioning circles on the canvas with the vector abstraction
In the code block below is a vector abstraction1 used to program the movement of the circles.

class Vector {
constructor(public x: number, public y: number) { }

static times = (k: number, v: Vector): Vector =>
new Vector(k * v.x, k * v.y);

static minus = (v1: Vector, v2: Vector): Vector =>
new Vector(v1.x - v2.x, v1.y - v2.y);

static plus = (v1: Vector, v2: Vector): Vector =>
new Vector(v1.x + v2.x, v1.y + v2.y);

static dot = (v1: Vector, v2: Vector): number =>
v1.x * v2.x + v1.y * v2.y;

static mag = (v: Vector): number => Math.sqrt(v.x * v.x + v.y * v.y);

static unit = (v: Vector): Vector =>
Vector.times(1 / Vector.mag(v), v);

static distance = (v1: Vector, v2: Vector): number =>
1Slightly condensed

3

Vector.mag(Vector.minus(v2, v1));

static cross = (v1: Vector, v2: Vector): number =>
v1.x * v2.y - v1.y * v2.x;

static angleBetween = (v1: Vector, v2: Vector): number =>
Math.atan2(Vector.cross(v1, v2), Vector.dot(v1, v2));

}

The code examples use the TypeScript programming language. The choice was made to
use TypeScript because TypeScript is more easily readable language than ordinary JavaScript.
Because function definitions are statically typed, their purpose to the rest of the code base
is a lot more apparent. A brief explanation is as follows: A class can be named as evident in
the above source code block. The class can only be created when passed the parameters as
specified in the constructor function. Member function parameters are within parenthe-
ses, separated by commas as (parameterName: ParameterType, secondParameterName:
SecondParameterType, ...lastParameterName: lastParameterType), where to the left
of the : inside of the parentheses is the parameter name, and to the right is the typing as-
signed to the parameter. The return object type is listed after these parameters and a :.
Finally, the function return value is the returned value of whatever is on the right hand side
(or next line) after the arrow operator =>.

The Vector.times function (that is, the times member function in the Vector class) is a
scalar multiplication of a vector value by a constant. Vector.times therefore takes a number
type parameter to be the scalar, and a Vector type parameter to be the vector, and returns
the Vector parameter scaled by the number parameter. Vector.plus and Vector.minus
take two Vector parameters, and return the vector addition and vector subtraction, re-
spectively, as a single Vector type return value. Vector.dot and Vector.distance take
two Vector parameters and returns a number type dot product of the two vectors and the
distance between the two vectors, respectively. Vector.mag and Vector.unit each take
one Vector type parameter and return the number type vector magnitude and vector unit,
respectively. The Vector.cross function is somewhat of a misnomer; it takes two Vector
type parameters and returns a number type parameter. Euclidean space R3 has a mean-
ingful cross product; here, the function is called cross, but is not actually a cross product.
The Vector.cross function is used in the Vector.angleBetween function returns which re-
turns a number type corresponding to the angle between two Vector type parameter velocity
vectors.

This vector abstraction is used liberally throughout the game. Dealing with data is much
easier when the data is packaged into one element. One need only talk about one vector,
instead of the points that make up the vector. An additional example: Circles contain a
position vector, a direction vector, and use vectors in many different ways; however, when
talking about the circle, it is convenient to say simply the circle’s velocity, or the circle’s
position, or just the circle in general.

4

2.2 Designing interesting circle movement on the canvas with the
Behavior interface

The main component of each circle’s behavior is the Behavior interface. Each behavior is
built as a class implementing two member functions, condition, and consequence. The
circle is placed onto the canvas on the screen as a vertex (as though the canvas is a graph),
and it runs in the context of a game loop eventually provided by an object of the class Game.

interface Behavior {
condition(v: Vertex, game: Game): boolean;
consequence(v: Vertex, game: Game): any;

}

In the declaration of the behave function, it becomes clear how the behaviors are utilized.
At any given state, the circle will only be able to use one of the available behaviors. The
behaviors transition the circle into the next position on the canvas by greedily choosing the
first behavior found to be available.2

behave = (v: Vertex, game: Game): void => {
if (v.circle.isDead())

return
for (let b of this.behaviors) {

if (b.condition(v, game)) {
b.consequence(v, game);
return

}
}

}

By the way that the circles are created, it has been made easy to develop new behaviors.
Once a behavior is defined, it can simply be added to the list of behaviors of the circle. Then,
the behavior should operate correctly given that the consequence and condition functions
are defined in the way specified. The following code fragments provide a simple example.
SimpleAimShootBehavior, and SimpleAttackBehavior do nothing but search for an oppos-
ing circle to attack, then attack that circle by either shooting a bullet at them or charging
towards them.

let circle = new RedCircle(i); // for some index i, some unique id.
circle.behaviors = [new SimpleAimShootBehavior(), new SimpleAttackBehavior()];

2let is the keyword for creation of a variable in only the closest namespace. of is a keyword specific
to the for loop constructions in TypeScript. It specifies that at each iteration of the for loop, the let
variable is assigned to the current element of the array. By contrast, the in keyword specifies in the for
loop constructions that the let variable is assigned each of the indexes of the array instead of the element
of the array.

5

The condition of both of these functions looks something like the code figure below. Each
circle on the canvas will have to first find an enemy. If there is an attack available for the
circle to use and the enemy is in range to be attacked, then the condition is met and so the
consequence will then run so that no other behaviors can be chosen for that circle for that
game state.

condition = (v: Vertex, game: Game): boolean => {
// find enemy circle to attack
this.enemyTarget = this.findEnemy(game);
return this.canAttack();

}

In the consequence, the circle makes the decision to attack the enemy target circle. At
this point if the circle is not facing the enemy target circle or if the enemy target circle is too
far away, then it is impossible to attack the enemy target circle properly. Thus the circle first
tries to turn to the appropriate direction of the enemy target circle, and also move towards
the position of the enemy target circle. When the attack can be made properly, then the
attack is made.

In the case of the SimpleAttackBehavior, the circle simply lunges at the enemy target
circle. In the case of the SimpleAimShootBehavior, the circle simply shoots a bullet in its
current direction. However, in the case for SimpleAimShootBehavior, the bullet needs to be
able to appear in the game, therefore the shootBullet function needs the parameter of the
circle’s vertex passed to it, as well as a parameter of type Game. The bullet needs the former
for current direction of the circle, and needs the latter so that bullet becomes initialized in
a place that it can exist.

consequence = (vertex: Vertex, game: Game): boolean => {
// this.enemyTarget is initialized in the condition function. Also, the
// condition verified that this.enemyTarget is in range to attack.
if (Vector.angleBetween(

vertex.circle.vel,
Vector.minus(this.enemyTarget.circle.position, v.circle.pos)) === 0

&& this.enemyInRange()) {
this.attack(this.enemyTarget) // or this.shootBullet(v, game);

} else {
v.turnToPosition(this.enemyTarget.circle.position);
v.moveToPosition(this.enemyTarget.circle.position);

}
}

3 Mathematical foundation
The simulations are to compare themselves to Finite Automatons. A simulation is considered
to be determinable if the simulation can be defined as an automaton.

6

3.1 Finite Automaton
Def 3.1. Finite Automaton A finite automaton is a 5-tuple (Q,Σ, δ, q0, F), where:

1. Q is a finite set called the states,

2. Σ is a finite set called the alphabet,

3. δ: Q× Σ −→ Q is the transition function,

4. q0 ∈ Q is the start state, and

5. F ⊆ Q is the set of accept states.

In relation to the project at hand, it will be shown that some collections of behaviors
given to circles to produce simulations of finite state automatons. Each of the parameters
of the 5-tuple are related to the simulation as follows:

1. The set of states, Q is a finite set, where each circle has a personal set of states
Q(c) ∈ Q. Each state consists of a 2-dimensional vector position for every circle as
well as its quality of aliveness. Each position corresponds to the position of the circle
where the number of possible positions is finite by the number of possible pixel locations
on the canvas.3

2. The alphabet is a finite set of transition names corresponding to a behavior function, σ,
that determines what transition a circle will take. That is, each transition corresponds
to the behavior that the circle takes to move, denoted σi(c) for the particular state
qi(c) at the ith turn of the simulation, where i < N ∈ N for some N . Since it would be
a waste of time for a circle to not be behaving, then it makes sense that a transition
should always be taken by the circle every time there is a transition to be taken. The
alphabet being read then corresponds to the sequence of behaviors taken by each of
the circles during the duration of the simulation.

3. As just stated, the transition function corresponds to the name of the behavior the
circle reads, so δi(qi,Σi) = qi+1 for every state i < N ∈ N. The transition function,
or behavior, determines where the next position that each circle will be, and there-
fore what its next state will be. δ is also denoted to act upon individual circles as
δi((qi(c), σ(c))) = qi+1(c).

3It should be noted that is not exactly precise. Any position could not be finite in the sense that
there is not a limit in the number of pixels that a circle can occupy on the canvas of the web browser.
JavaScript, (and therefore TypeScript, as TypeScript transpiles to JavaScript) uses only rational numbers
in its computations—there is no integer primitive. So the point that I’m making here, is wrong in a sense,
but it’s a point that could be worked out better. The ECMAScript language specification states:

According to the ECMAScript standard, there is only one number type: the double-precision
64-bit binary format IEEE 754 value (number between −(253 − 1) and 253 − 1). There is no
specific type for integers. In addition to being able to represent floating-point numbers, the
number type has three symbolic values: +Infinity, -Infinity, and NaN (not-a-number).

7

4. The start state can be set to any valid state, where all circles are given a position, and
a behavior or a list of behaviors.

5. The set of accept states is any state where the red team has at least one of its
surviving circles, and the blue team doesn’t have any of its surviving members. This
also suggests that the set of non-accept states is any in which there are no surviving
circles of the red team, but at least one surviving circle on the blue team.

At each state of the game qi, every circle c and every opposing circle c chooses its behavior
to run its corresponding transition function, that is [∀c ∈ R, qi+1(c) = δ((qi(c), σi(c)))]∧[∀c ∈
B, qi+1(c) = δ((qi, σi(c)))] at every state i < N ∈ N for some N . The simulation halts when
qi+1 = f ∈ F for some accepting state f .

3.2 Non-determinism
Def 3.2. Nondeterministic Finite Automaton A nondeterministic finite automaton is
a 5-tuple (Q,Σ, δ, q0, F), where:

1. Q is a finite set called the states,

2. Σ is a finite set called the alphabet,

3. δ: Q× Σ −→P(Q) is the transition function,

4. q0 ∈ Q is the start state, and

5. F ⊆ Q is the set of accept states.

The only difference between this definition and the other definition of a finite automaton
is in the definition of the transition function δ. The state q following a transition δ is any
q′ ∈P(Q) instead of some specific q′ = δ(q). It is also that a transition can move the circle
to any valid position on the canvas. This implies a massive set of possibilities. If a game has
a canvas size of 640px× 640px, that means that a circle at some position on the canvas has
6392 different possible next transitions to take, and that is just between the current state
and the following state. If each game is expected to run at 60 frames per second, then it
would be unfeasible on an average computer to make considerations about all of these moves.
As an example, 50 circles would need to make 1,224,963,000 (50× 6392 × 60) computations
about their next positions every second.

Using only the transitions written alleviates pretty much all of this computational com-
plexity. At each frame, each circle only needs to make considerations about each of its owned
behaviors. In the simple example where each circle’s behaviors are SimpleAimShootBehavior,
and SimpleAttackBehavior. 50 circles would need only to make up to 6,000 (50 × 2 × 60)
computations every second.

The conceptual difference between the simulation being deterministic or nondeterministic
lies in the choice of behavior functions σ. At any given state i, multiple different simulations
could be run with each state qi acting as the start state where other simulations could
start from. At the moment, however, there have not been very many different behavior

8

functions σ defined. In other words, the derivable nondeterministic δ when considering how
the simulation relates to a nondeterministic automaton is not yet quite interesting enough
to consider.

3.3 Running loop
Let’s consider how the simulation machine itself might actually run. Earlier the win condition
for the red team was defined as

[∀c ∈ B, θ(c)] ∧ [∃c ∈ R,¬θ(c)].

This can easily be computed with the following code snippet.

static winCondition = (game: Game): boolean =>
game.blue.circle.every((c) => game.circleIsDead(c))
&& game.red.circle.some((c) => !game.circleIsDead(c));

We can then use the behave function from earlier as well to satisfy the mathematical state-
ment

[∀c ∈ R, qi+1(c) = δ((qi(c), σi(c)))] ∧ [∀c ∈ B, qi+1(c) = δ((qi, σi(c)))].
Since the behave function determined which behavior to use, and then produced the next
state using the current state of the circle, one can easily write a computation that satisfies
the statement. Note that game.vertexes contains all of the blue and red circles, as well as
their positions on the canvas, which is required for the behave function.

static behaviorRun = (game: Game): void =>
game.vertexes.forEach((v) => v.circle.behave(v, game));

4 Qualifying behavior
The purpose of this section is qualify the difference between good behavior and bad behavior
in the simulation. Ideally, in the way that we want to determine which simulations can be
related to deterministic automatons, we want to be able to say that a simulation can have
good behavior. Since the overall behavior of the circles relies on the individual behaviors
given to the circles, good and bad behavior globally should be determinable by the individ-
ual behaviors given to the circles, or, in more complex situations, the way that individual
behaviors interact with each other.

4.1 Good behavior
The first example, using the SimpleAimShootBehavior and SimpleAttackBehavior, is eas-
ily verifiable as a finite state automaton. In any valid consideration of starting states, the
two defined behaviors result in the simulation reaching an accepting state.

At the beginning of this example simulation, each circle’s AttackBehavior condition
is met so that it begins to move towards an opposing team’s circle in the consequence.

9

Figure 1: Just after starting the good behavior configuration

Figure 2: Towards the end of the good behavior simulation

10

At some point, the circles are close enough to their opposing target circle so that the
SimpleAimShootBehavior condition is met, wherein the consequence is a bullet being fired.
This portion of the simulation could look like this:

Notably, this construction is well-behaved, as each of the behaviors of the circles have
the circles actively searching out opposing circles to eliminate. Towards the end of the
simulation the circles must move around the grayed-out, eliminated circles, however their
ability to eliminate the opposing circles is still good enough to where the simulation reaches
an accepting state.

Unfortunately, certain collections of behaviors may not always yield terminating simu-
lations. The idea is then to decide what kinds of collections of behaviors lead to having
simulations with good behavior.

4.2 Simple bad behavior
Consider two simple opposing circles, one given a behavior EnCircleBehavior, the other
given SimpleFollowBehavior. The former circle follows the circumference of an imaginary
circular shape on the canvas, and the latter simply follows its opposing circle around. Given
this simple setup, it should be clear that the resulting simulation will never find itself in an
accepting state.

The simulation at first is something like:

Then, after some time, looking very similarly as before, is something like:

In this particular misbehaving example, the large, red circle has a speed twice as much
as the smaller, blue circle. This setup results in the two circles following the circumference

11

of two imaginary, concentric circular shapes different in phase from each other by an angle
of π

3 as detailed in Figure 3.

Figure 3: The two imaginary concentric shapes followed by the circles, where α = π
3 . The

blue circle is placed at the end of the shorter arrow, and the red is placed at the end of the
longer arrow. The intended path of travel of the blue circle at a given instance of time is
represented by the dotted line.

α

Since the two concentric circles, as in the image, have differing radii, their paths never
cross. Therefore, the circles moving along the paths of the imaginary circles will never touch,
and neither of them will ever receive any damage.

4.3 Complex bad behavior
Given that the circles in the good behavior example had the ability to shoot bullets, one
might think that the bad behavior could possibly be rectified by giving the blue circle in
the Simple bad Behavior section the ability to shoot at the large, red circle that it was
chasing. This is a good thought, but the bullets still may not have the speed to satisfy the
needs of the blue circle to meet the accepting condition of the game.

12

Here, the bullets still miss the large red circle completely and so there still needs to be
a fashion to determine how good behavior can be reached globally given behaviors that do
not interact at all well with each other.

4.4 Analysis
In these examples, it is assumed that there is no real intelligence behind the behaviors
exhibited by the circles. The behaviors satisfy one particular movement on the canvas, and
do not learn how to fix their behavior if it proves not to be very successful. For example,
in the simple bad behavior simulation, if the blue, chasing were to turn itself around and
place itself, then it would be able to intercept the running, red circle as it moves around its
circle. This would result in better behavior globally, however if the red circle were equally
as intelligent, then it would simply itself from moving after it sees the blue, chasing circle
stopping itself to turn around. Thus having intelligent circle behavior might result in the
circles not having good behavior, in the sense that we want, globally.

Without making any assumptions about the circles’ abilities to learn from their mistakes,
the challenge of structuring the behaviors of the circles becomes much. For example in the
simple bad behavior simulation, the blue, chasing circles’ chances of success would easily be
increased by simply increasing its movement speed. One could determine the lower limit that
the chasing circle’s speed need be in order to ensure catching up to the red circle running
away. This could be solved analytically by way of considering the properties of the imaginary
concentric that the circles moved around. The circles shared the same rotational velocity ω
when moving around the circle, and their tangential velocities vt, having could so be related
by ω. When the inner circle moves around the circle with v(1)

t ·r1 = ω, the outer circle moves
around the circle with v(2)

t · r2 = ω. With the relationship v(1)
t · r1 = ω = v

(2)
t · r2, one could

determine, given velocity v(2)
t and radius r2 the required velocity v(1)

t needed to minimize the
distance between the outer circle and the inner circle. When the inner circle has radius ρ1

and the outer circle has radius ρ2, it must be that radius r1 =
√
r2

2 − (ρ1 + ρ2)2 when the
distance between ρ1 and ρ2 is minimized. This means that given

v
(1)
t >

v
(2)
t · r2√

r2
2 − (ρ1 + ρ2)2

,

the simple bad behavior can be made into good behavior.
The same kind of analysis can be made in the complex bad behavior example as well if

the assumption is made that the blue, chasing circle fires at a random angle to its right. Say
that the red circle moves with a velocity, v(2)

t around the imaginary circle having radius r2.
Given a bullet speed bs fired at random at an angle β ≤ π

4 to the right of the direction of
the blue circle at time, the bullet has a chance to hit the red circle traveling in the way of
the bullet if it has moved at most 2π

3 · r2 distance around the circumference of the imaginary
circle in the time in takes the bullet to at most travel 2 · r2 distance across the imaginary
circle. This circumstance happens at the latest when

t = bs
2 · r2

,

13

having the outer, red circle traveling a distance∫ t

0
v

(2)
t dt = 2π

3 · r2.

Given that v(2)
t is a constant, the previous equations can be put together as

v
(2)
t

bs
2 · r2

= 2π
3 · r2

so that the bullet speed bs can be put in terms of v(2)
t and r2 as

bs = 4π
3 ·

r2
2

v
(2)
t

.

Using this bullet speed, the least angle of β possible to hit the red circle; however, this least
angle would only be applicable in the this particular case, and probably we would not want
a shooting behavior that never fired directly forward.

In any case, it is this sort of analysis which leads one to be able to determine what
parameters need to be placed on the given behaviors written in order to ensure the prevalence
of good global behavior in the simulation.

5 Bibliography
• ECMA-262 7th edition: ECMAScript 2016 Language Specification (June 2016) by

E.C.M.A. International

• Sipser, M. (2006). Introduction to the theory of computation. Boston: Thomson
Course Technology.

14

	Purpose
	Nomenclature and convention
	Positioning circles on the canvas with the vector abstraction
	Designing interesting circle movement on the canvas with the Behavior interface

	Mathematical foundation
	Finite Automaton
	Non-determinism
	Running loop

	Qualifying behavior
	Good behavior
	Simple bad behavior
	Complex bad behavior
	Analysis

	Bibliography

